jump to navigation

In Praise of Praise: How Historians Could Improve Celebratory History May 10, 2013

Posted by Will Thomas in Commentary Track.
Tags: , , , , , , ,

This afternoon, thanks to the initiative of Jim Grozier, I am giving a talk at the weekly High Energy Physics seminar at UCL.  The subject will be my work on experimentation in early particle physics.  While my “Strategies of Detection” paper mainly concerns the problem of how to build “mesoscopic” histories of experimental practices, my talk will repurpose my argument to discuss how we can articulate and evaluate experimental ingenuity and skill.  This jibes with other thoughts I’ve had about whether it could ever be considered legitimate for a professional historian to write a celebratory narrative of scientific progress.  The very notion triggers the raising of well-disciplined eyebrows: isn’t it the job of professional historians to problematize celebratory narratives?  But, really, I can’t think of a good reason why not, and it seems to me there is substantial opportunity to improve the genre.


Historical Scientific Standards, or: The Career of the “Varytron” April 14, 2013

Posted by Will Thomas in Commentary Track.
Tags: , , , , , , , ,

Alichanian, apparatus

While Robert Millikan thought, circa 1930, that signs of the synthesis of the elements could be gleaned from the energy spectrum of the cosmic radiation, in the late 1940s Armenian physicists (and brothers) Artem Alikhanian and Abraham Alikhanov thought that the way forward in the nascent field of particle physics was by measuring the cosmic radiation’s mass spectrum. It turned out that they were right that unknown particles existed within that spectrum, but wrong that measuring that spectrum was the best path to take to stake discovery claims to them.

Alikhanian and Alikhanov’s work on cosmic radiation dates—remarkably, given that they were Soviet—to World War II, when, like Italians working at the same time (Monaldi, “Life of µ”), they used counter devices to measure the radiation’s properties. In the early postwar years, they (with a third reseracher, A. Weissenberg, on whom I have found little information) assembled counters in tiers (diagram at right*) so that they could make a rough measurement of the deflection of particles in a magnetic field, and make estimates of particle mass. Doing so, they measured a large number of particle masses, which, they argued, were much heavier than the known meson (or “mesotron”, now known as the muon, or µ), and yet lighter than the proton. Because these new particles seemed to have a variety of masses, Alikhanian and Alikhanov gave them the unitary name, “varytron”.

Subsequently, using a larger magnetic field, Alikhanian and Alikhanov were able to resolve the spectrum of varytron masses into discrete clusters, ostensibly representing individual particles. Working high in the Armenian mountains, previously unacknowledged particles, especially pions, probably were passing through their apparatus. However, in those days, when particle physics began to emerge from nuclear physics and cosmic-ray studies, not only were the brothers never credited with the discovery of any new particles, this work seems to have had very little influence at all. To understand why, we need to attend to the intricacies of the sorts of scientific arguments that prevailed at that time—the sort of task I emphasized in my recent series on history-philosophy relations.


New Article in Historical Studies in the Natural Sciences December 5, 2012

Posted by Will Thomas in Commentary Track.
Tags: , , , , ,

hsns.2012.42.issue-4.coverMy new article, “Strategies of Detection: Interpretive Practices in Experimental Particle Physics, 1930-1950,” Historical Studies in the Natural Sciences 42 (2012): 389-431, is out.  Click here to download a free pdf copy (15MB—lots of images).  I’ll talk more about the contents of the paper in future posts. For the moment, I’d just like to publicly jot down some thoughts about the origins and thinking behind the paper, which I think is a useful exercise to do for all new publications.

The paper is self-consciously a testing ground for ideas about how to build a more synthetic historiography. First, it’s an attempt to develop a way to find interesting historical “objects” to periodize and interrelate in the history of scientific practice. In doing this, I am trying to build explicitly on the foundations for “mesoscopic” history that were laid by Peter Galison (my PhD advisor) in his big book,Image and Logic (1997). Other attempts to do this sort of thing have tended to look for very large “objects”, such as John Pickstone’s “ways of knowing” or Galison and Lorraine Daston’s attempt to classify and periodize concepts of “objectivity”. I am arguing for the importance of looking at things that are smaller, but which are not simply “local”, and things that are less “epistemic” in nature, but which nevertheless provide us with insight into past scientific arguments. These are the titular “strategies of detection”.

Second, the paper is also an attempt to summarize the already considerable past gains in the historiography of experimentation in particle physics (which is dominated by Image and Logic), and then to go deeper, retaining and extending some gains while challenging and revising others. If we imagine historiographical progress as existing along two axes of “depth” and “breadth”, this paper aims to further progress along the depth axis, while contributing only slightly to the breadth axis. But I started work on this paper while putting together the topic guide on particle physics for my Array of Contemporary American Physicists resource, which looks for new gains mainly along the breadth axis. So, in my mind, ACAP and “Strategies of Detection” are complementary branches of my thinking about the central problem of historiographical synthesis.

A few notes on the paper’s origins below the fold.