jump to navigation

Sutton vs. Jacob: Was John Desaguliers a Prophet of Industrialization? February 1, 2015

Posted by Will Thomas in Uncategorized.
Tags: , , , ,
trackback

Jacob and Stewart, Practical MatterIt’s a serious question. We come to it from my earlier look at Simon Schaffer’s “Enlightened Automata” (1999), in which he claimed that “Some historians still deny that natural philosophies ‘fed the fires of the industrial revolution.’ Others more convincingly indicate the intimate connections between the machinery of natural philosophers’ concerns and that of the new entrepreneurs and projects.” He specifically identified Geoffrey Sutton in the first camp, and Margaret Jacob and Larry Stewart in the second.

Since the 1980s Jacob and Stewart have both consistently argued that the intellectual development of the sciences, the technical development of machines, and the economic development of industry were closely intertwined phenomena, particularly in Britain where the Industrial Revolution commenced. In 2004 they jointly published Practical Matter: Newton’s Science in the Service of Industry and Empire, 1687–1851, which offered an overview of their general argument. Jacob’s new book, The First Knowledge Economy: Human Capital and the European Economy, 1750–1850 continues her multi-decadal mission.

Sutton, Science for a Polite SocietyGeoffrey Sutton’s Science for a Polite Society: Gender, Culture, and the Demonstration of Enlightenment was published in 1995, but it is based on a dissertation he finished at Princeton in 1982. By the time it came out, Sutton was already operating on the fringes of academic history, and would not (to the best of my knowledge) produce further research.

Sutton allowed, “Enlightened thinkers believed that the application of the methods and techniques of science theory could reform political and economic thought, just as the applied fruits of scientific physics and chemistry could improve the human condition” (5). But the focus of his book was on how natural philosophical demonstration and disputation had their primary influence in polite, rather than practical, environments in 17th and 18th-century France.

There is no necessary conflict between at least the rudiments of the Jacob-Stewart and Sutton points of view. It is perfectly possible for the sciences to have been integrated into both practical and polite cultures. And, in fact, if we follow Schaffer’s specific citation in Sutton, we find that, in this instance, we are actually dealing with a more specific disagreement concerning how best to interpret the significance of certain lectures offered by John Desaguliers (1683–1744).

However, as we will see, this disagreement is one that points to larger historiographical problems.

John Desaguliers

John Desaguliers

Desaguliers is not really a well-known figure among those with a casual interest in the history of science. But, as one of the key acolytes of Isaac Newton, he is ubiquitous in professional histories of the development of the sciences in the 18th century. For Jacob, he is of particular interest as one of the early figures in the proliferation of public lectures on the new experimental and mechanical sciences, and, especially, as someone with an interest in applying philosophical knowledge to practical problems.

According to Jacob in her book The Cultural Meaning of the Scientific Revolution (1988), “The early eighteenth-century Newtonians rendered their science comprehensible to an audience that could be either genteel and educated or commercial and practical” (141). And the latter audience was critically important: “The interests of men who wished to weigh and move goods, to improve water transportation, to drain fens or remove the damp from mines dictated the format of the earliest lectures” (142).

No audience was expected to be able to apply the mathematics of Newtonian science. When Desaguliers began offering courses in 1713 “to such as are altogether unskilled in Mathematics,” he discussed the numerous applications of essential mechanical principles to practical problems, ranging from the functioning of mechanical engines to “the operations of levers, weights, pulleys, and the use of wedges,” to the ballistics of cannonballs and bullets. “Specific attention,” Jacob noted, “was given to using mechanical principles in order to augment human strength, and to applying mechanical principles to water flow and control” (143).

Diagram concerning friction in mechanical engines, from Desaguliers, Course of Experimental Philosophy. Click through for an online exhibit on Desaguliers at the Cambridge Whipple Library website.

Diagram from a lecture concerning friction in mechanical engines, from Desaguliers, A Course of Experimental Philosophy. Click through for an online exhibit on Desaguliers at the Cambridge Whipple Library website.

Desaguliers’s widely read two-volume book, A Course of Experimental Philosophy (1734/1744), also featured the applications of mechanics to practical examples. In Jacob’s view, “The economic vision of the text is surprisingly consonant with the basic principles around which the Industrial Revolution later occurred” (144). And, indeed, in the long run, the effects of such lectures gave rise to a culture capable of supporting the industrialization process (141):

…by the 1790s the linkage between scientific knowledge and industrial application had become commonplace. Indeed by that time the scientific knowledge of applied mechanics may have proved determining when decisions involving the introduction of new machinery, at considerable capital risk, had to be taken promptly and confidently…. By the 1790s we can find merchants who were able to correct the complex drawing plans of hired engineers. They were able to do so because two or more generations of scientific educators had plied their trade from the London coffeehouses to the valleys of Derbyshire.

Jacob continued to point to the significance of Desaguliers, even in short works such as her entry on “Enlightenment and Industrial Revolution” in John Heilbron’s Oxford Companion to the History of Modern Science (2003).

However, this significance attributed to Desaguliers was resisted by Sutton. Citing Jacob, he wrote (211–212): 

Much has recently been made of the importance of Desaguliers’s lectures for the development of a sort of mechanical consciousness, first in Great Britain and then Holland. This familiarity with machines allegedly fed the fires of the industrial revolution. One suspects that, as with the steam engine, cause and effect were more important in the other direction: Technology supplied the material for analysis by natural philosophers. It is certainly true that Desaguliers devoted several lectures to machines, although his analysis did not proceed beyond the application of the law of the lever—the observation that the speed with which a weight is raised is inversely proportional to the power that raises it. Yet what he analyzed were existing machines; he tried to explain how it was that men or horses might pull heavy loads in carts that rode on steel wheels turning on iron rails. Although he expressed fascination from the time of his early lectures with inefficient, fire-powered Newcomen engines, he provided more significant arguments concerning the limitations on work that men or horses could complete in a day. These arguments came only in response to reckless claims that machinery could accomplish an unreasonable multiplication of effort, and this only in the last year or so of his career. It is ironic that his definition of these limits might seem to set the stage for the industrial revolution: The great motor of industrialization was the steam engine, capable of delivering more power than men or horses ever could. Apart from standard analyses of simple machines, available from the early years of the seventeenth century, Desaguliers’s lectures generally explored the transmission of human or animal power rather than the application of great powers mechanically produced.

Sutton went on to note that Desaguliers’s lectures were not substantially different from those offered in other parts of Europe, which does not help to explain the “differential rates of industrialization” in Europe.

Of course, the particular problem of differential rates of industrialization is a problem that has long interested Jacob. Jacob argued in Cultural Meaning that, while a “large number of provincial literary and natural philosophical societies … spread all over France in the course of the century and in consequence made scientific knowledge available on an unprecedented scale,” the “aristocratic domination in those societies hardly permitted the kind of gentlemanly zeal for practical science that we see in late eighteenth-century Derbyshire or Birmingham.” Moreover, she pointed to studies that argued that “the contrast between French and British economic development” had, in any event, been overdrawn (202).

In her Oxford Companion piece Jacob pointed to “guild and other restrictions” inhibiting the French in developing “scientific instruments and technically advanced machinery,” and noted the delay in French universities adopting Newtonian science. In The First Knowledge Economy, Jacob has continued to concern herself with the failure of France to industrialize early in spite of its technical culture, and, crucially, in spite of widespread concern there over British prowess. In view of her emphasis on the peculiarly broad British “zeal” for practical culture, one might suppose that Sutton’s emphasis on the more genteel culture surrounding the sciences in France actually fits the bill of her argument.

Looking at the substance of Sutton’s criticism, though, there does indeed seem to be a large gap between the fairly thin overlap between the sciences and practical culture that we can definitely identify with Desaguliers, and the later, much more intense process of industrialization, the inauguration of which is supposed to have depended crucially on the culture Desaguliers represented.

Practical culture, and even an intense concern with “projects” and “improvements,” are not, of course, the same as industrialization, or even necessarily anticipatory of it. In our next post we will look more closely at the concept of “proto-industrialization” and Jacob’s position with respect to it.

Advertisements

Comments»

1. thonyc - February 4, 2015

I think that Sutton is taking a possible link between Desagulier’s popular lectures and the Industrial Revolution a little bit too literally. It is very clear that the members of the Lunar Society of Birmingham, Josiah Wedgwood, Erasmus Darwin, Matthew Boulton, James Watt et al., who were very much at the centre of the British Industrial Revolution, were big fans of the Newton approach to problem solving (I’m deliberately avoiding the term scientific method) and applied it extensively in all of their endeavours. However the question remain open what role Desagulier’s lectures played in the popularizing of Newtonian method amongst the more practically minded in the 18th century.

The early popularisers of Newton, Desagulier, Francis Hauksbee and William ‘s Gravesande found many imitators amongst the philosophical instrument makers in London, who held their own lectures or demonstrations of various scientific phenomena, and also wrote books on the subject, in order to generate sales of the scientific equipment that they manufactured. Such demonstrations included model steam engines and steam power.

I have recently been reading about the activities of the optical instrument maker, Francis Watkins in this area, in the excellent “Francis Watkins and the Dolland Telescope Patent Controversy” by Brian Gee. Watkins also built and demonstrated a steam engine during his ‘scientific’ lectures, held to promote his business.

James Watt was also a philosophical instrument maker who served his apprenticeship in London and would have been fully aware of such lectures and demonstrations by his colleagues. It was his attempts to repair just such a demonstration model for Joseph Black’s lectures at the University of Glasgow, after his return to Scotland, that awoke his interest in steam power.

Whereas Desagulier might well not have lectured on the steam engine those artisans who imitated his lectures to boost their trade certainly did so, maybe the influence is an indirect rather than a direct one.

Will Thomas - February 4, 2015

Hi Thony, I think you’re right in that Desaguliers, per se, isn’t really so crucial to Jacob’s overarching point, as is the spread of methods, skills, and culture that he represented, and did much to set in motion. For that reason, I don’t know that the question of whether or not he lectured about steam engines or not, and, for that matter, who did, is the central issue, either. So, in that respect, I do think that Sutton’s objection is a bit unfair. But, then again, it’s a two-page aside in his book, so it may also be prudent for us not to make too much of the Desaguliers question, either.

I do think there are a few questions that bear scrutiny, where I would be apt to entertain Jacob’s critics.

First, although Boulton, Watt, Wedgwood, and their circle certainly had broad interests that included natural philosophy, and although they were unquestionably (and probably partially also for that reason) core players in industrialization, industrialization was, of course, driven by a much broader group. I’m curious how well the thesis would hold if we expanded our scrutiny beyond those elites. Her brief discussion of merchants correcting drawings isn’t terribly convincing. (Jacob may well address this issue elsewhere; I haven’t had the opportunity to fully survey her oeuvre!)

Second, insofar as industrialization did depend on sets of ideas, e.g., a kind of methodical problem-solving, a mechanical-mindedness, etc., to what extent should we trace those ideas to Newtonian mechanics, or, even, somewhat more broadly, to mechanical/experimental philosophy? One could see industrialists taking an amateur interest in Newtonian mechanics because it reflected their ideas, rather than it being the source of them.

Third — and I think this gets most to the Sutton vs. Jacob point — even if we accepted that the intellectual culture of industrialization could be traced to natural philosophical inquiry, surely the elements of that culture most germane to the actual process of industrialization developed later. Thus, to say that they are somehow implicit or embryonic in Desaguliers’s, and in his contemporaries’, much more rudimentary lectures on practical applications of mechanics would be misleading. This is how I interpret Sutton’s criticism on the differential rates question — there was nothing in the lectures that, if left uninhibited, would necessarily lead to being Britain rather than France.

Anyway, those are, in my mind, open questions. I’d appreciate your thoughts, as you’re closer to this historiography than me. It has, I have to say, been useful to me to try and parse these issues out.

2. Whewell's Ghost - February 9, 2015

[…] Ether Wave Propaganda: Sutton vs. Jacob: Was John Desagulier a Prophet of Industrialization? […]


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s